Nekhoroshev estimates for finitely differentiable quasi-convex Hamiltonians
نویسندگان
چکیده
منابع مشابه
Quasi-Exact Sequence and Finitely Presented Modules
The notion of quasi-exact sequence of modules was introduced by B. Davvaz and coauthors in 1999 as a generalization of the notion of exact sequence. In this paper we investigate further this notion. In particular, some interesting results concerning this concept and torsion functor are given.
متن کاملHermite-Hadamard type inequalities for n-times differentiable and geometrically quasi-convex functions.
By Hölder's integral inequality, the authors establish some Hermite-Hadamard type integral inequalities for n-times differentiable and geometrically quasi-convex functions.
متن کاملCoincidence Quasi-Best Proximity Points for Quasi-Cyclic-Noncyclic Mappings in Convex Metric Spaces
We introduce the notion of quasi-cyclic-noncyclic pair and its relevant new notion of coincidence quasi-best proximity points in a convex metric space. In this way we generalize the notion of coincidence-best proximity point already introduced by M. Gabeleh et al cite{Gabeleh}. It turns out that under some circumstances this new class of mappings contains the class of cyclic-noncyclic mappings ...
متن کاملApproximations of differentiable convex functions on arbitrary convex polytopes
Let Xn := {xi}ni=0 be a given set of (n + 1) pairwise distinct points in R (called nodes or sample points), let P = conv(Xn), let f be a convex function with Lipschitz continuous gradient on P and λ := {λi}ni=0 be a set of barycentric coordinates with respect to the point set Xn. We analyze the error estimate between f and its barycentric approximation:
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2010
ISSN: 0022-0396
DOI: 10.1016/j.jde.2010.06.004